MODEL DINAMIS PERGERAKAN REVOLUSI SOSIAL DUNIA MENGGUNAKAN PENDEKATAN KUALITATIF DENGAN UJI APRIORI, DATA KUBIKAL DAN PREDIKSI - FERI SULIANTA
Posted by JMII e-Journal on 06.25
MODEL DINAMIS PERGERAKAN REVOLUSI SOSIAL
DUNIA MENGGUNAKAN PENDEKATAN KUALITATIF
DENGAN UJI APRIORI, DATA KUBIKAL DAN PREDIKSI
Feri Sulianta
Fakultas
Teknik, Jurusan Teknik Informatika
Universitas
Widyatama
Jalan
Cikutra 204A, Bandung, Indonesia
feri.sulianta@widyatama.ac.id
Abstrak
Seperti dikatakan
oleh para pakar bidang gender politik dan sosiolog terjadi problematik yang muncul dengan adanya
revolusi sosial dunia yang berakibat pada disintegrasi masyarakat manusia
secara individu, kebingungan gender, secara kelompok termasuk pula keluarga.
Problem seperti perang antar gender, dan konflik komunitas sosial hanyalah
bagian dari akibat yang terjadi karena revolusi sosial.
Hanya saja,
kondisi sosial masyarakat dunia merupakan subyek yang sulit diukur termasuk pula
dalam mengidentifikasi parameter di dalamnya. Maka dari itu perlu dibuatkan
model yang akan mewakili subyek sosial masyarakat dunia
yang juga mampu yang memunculkan dinamika perubahan sosial. Ruang lingkup
sosial dibatasi untuk secara spesifik mengalamati gender politik. Dalam kasus
ini, metode kualitatif mampu menangkap ruang lingkup kajian dan variabel
perihal revolusi sosial yang terjadi. Kebenaran pemilihan variabel dalam metode
ini akan diujikan terlebih dahulu sebelum membangun formasi data kubikal yang
akan menampung data-data yang menjadi bukti adanya revolusi sosial dunia.
Data pergerakan
revolusi sosial ini akan diprediksi menggunakan teknik data mining untuk
melihat hasil akhir dalam jangka waktu tertentu
perihal kondisi yang terjadi di masyarakat.
Hasil prediksi ini dapat dijadikan dasar gagasan untuk memberikan konsultasi
edukatif ranah sosial perihal urgensi masyarakat terkait politik gender dan
sebagai masukkan bagi tokoh-tokoh
pembuat kebijakan dalam menyikapi revolusi sosial.
Kata kunci :
Prediksi, revolusi sosial dunia, data mining , data kubikal, metode
kualitatif, aturan asosiasi
Abstract
Experts on gender politics
and sociologists express the problematic with the world of social revolution
that resulted in the disintegration of individual human societies, gender
confusion, as a group including the family. Problems such as the war between
the sexes, and social community conflict is just part of the consequences that
occur because of social revolution.
However, social conditions the
world is a subject that is difficult to measure including to identify the
parameters in it. Therefore needs to be made the subject of a model which will
represent the social world that is also capable to address the dynamics of
social change. The scope is limited to specific social with the political
gender studies. In this case, a qualitative method is able to capture the scope
of the study and variables concerning social revolution that occurred. Truth
selection of variables in this method will be tested first before building a
data cubical information that will collect data that is providing clues to the
social revolution the world.
Data movement is a social
revolution would be predicted using data mining techniques to see the final
results within a specified period, concerning conditions that occur in the
community. The results of these predictions can be used as the basis of the
idea to provide educational consultation concerning the social aspects of
public importance related to gender politics and as the figures entered for
policy makers in addressing the social revolution.
Keywords :
Predictions, world social revolutions, data
mining, data cubes, qualitative methods, association rules
- Download: Paper 3 JMII Vol 2 No 1 Tahun 2017
- Link detail temporer: http://ejournal.ferisulianta.com/download/JMII%20Vol%202%20No%201%202017/Paper%203%20JMII%20VOL%202%20%20No%201%20Tahun%202017.pdf
[1]. Abdul Karim . KERANGKA STUDI FEMINISME (Model
Penelitian Kualitatif tentang Perempuan dalam Koridor Sosial Keagamaan) . Fikrah,
Vol. 2, No. 1, Juni 2014
[2]. Agrawal, R., Srikant, R., Fast Algorithms for Mining
Association Rules. IBM Almaden Research Center 650 Harry Road, San Jose, CA
95120. Proceedings of the 20th VLDB Conference Santiago, Chile. 1994.
[3]. Amir B. Qualitative Research in Sociology. SAGE Publications Ltd. London
2004.
[4]. Blaxter, L, Hughes, C and Tight, M (1996) How to
Research, Buckingham, Open University Press.
[5]. Bryman, A (1988) Quantity and Quality in Social
Research, London, Routledge.
[6]. Burns, R (2000) Introduction to Research Methods,
London, Sage.
[7].
Dr. Marzuki, M.Ag., KAJIAN AWAL TENTANG TEORI-TEORI GENDER. PKn
dan Hukum FISE UNY)
[8]. Feri Sulianta. Awaken
The Giant – bangkitnya Revolusi Sosial Dunia. Leutikaprio Publications.
Desember 2016.
[9].
Gumilar Rusliwa Somantri. Memahami Metode
Kualitatif. Makara, Sosial Humaniora, Vol. 9, No. 2, Desember 2005: 57-65
[10]. Han,Jiawei., Kamber, Micheline., Data Mining:Concepts
and Techniques. Morgan Kaufmann Publishers 2006
[11]. How feminism is to blame for the breakdown of the
family, by Left-winger Diane Abbott.
[http://www.dailymail.co.uk/news/article-2256850/How-feminism-blame-breakdown-family-Left-winger-Diane-Abbott.html].
[12]. White, Howard. Institute of Development Studies,
Brighton, UKCombining Quantitative and Qualitative Approaches in Poverty
Analysis. World Development. Vol. 30, No. 3, pp. 511–522, 2002. 2002 Published
by Elsevier Science Ltd
[13].
Ivan Bratko and Dorian ˇSuc. Qualitative Data
Mining and Its Applications. Journal of Computing and Information Technology -
CIT 11, 2003, 3, 145-150
[14].
John F. Elder IV, Ph.D.. Data Mining with
Qualitative and Quantitative Data. iianalytics.com. 2011.
[15].
Natasha Mack. Qualitative Research Methods: A
Data Collector’s Field Guide. Family Health International. 2005
[16]. Sulianta, Feri. . Customer Profiling Pada Supermarket
Menggunakan Algoritma K-Means Dalam Memilih Produk Berdasarkan Selera Konsumen
Dengan Daya Beli Maksimum. Jurnal Ilmiah Teknologi Informasi Terapan, Vol 1, No
1 (2014), ISSN: 2407-3911.
[17]. Sulianta, Feri. Mining Food Industry’s
Multidimensional Data to Produce Association Rules using Apriori Algorithm as a
basis of Business Strategy. IEEE. Issue 28, March 2013.
[18]. Sulianta, Feri. Mining Transactional Data To Produce
Extended Association Rules Using Collaborative Apriori, Fsa-Red And M5p
Predictive Algorithm As A Basis Of Business Actions. Prosiding WISS. 2016.
[19]. Witten,Ian., Frank, Eibe., Data Mining – Practical
Machine Learning Tool and techniques. Morgan Kaufmann Publishers 2005 page :6 ; page: 27 paragraph 1 ; page :
112-118, page 47-86.