MODEL DINAMIS PERGERAKAN REVOLUSI SOSIAL DUNIA MENGGUNAKAN PENDEKATAN KUALITATIF DENGAN UJI APRIORI, DATA KUBIKAL DAN PREDIKSI - FERI SULIANTA

Posted by JMII e-Journal on 06.25
MODEL DINAMIS PERGERAKAN REVOLUSI SOSIAL DUNIA  MENGGUNAKAN PENDEKATAN KUALITATIF DENGAN UJI APRIORI, DATA KUBIKAL DAN PREDIKSI
Feri Sulianta
Fakultas Teknik, Jurusan Teknik Informatika
Universitas Widyatama
Jalan Cikutra 204A, Bandung, Indonesia
feri.sulianta@widyatama.ac.id



Abstrak
Seperti dikatakan oleh para pakar bidang gender politik dan sosiolog terjadi  problematik yang muncul dengan adanya revolusi sosial dunia yang berakibat pada disintegrasi masyarakat manusia secara individu, kebingungan gender, secara kelompok termasuk pula keluarga. Problem seperti perang antar gender, dan konflik komunitas sosial hanyalah bagian dari akibat yang terjadi karena revolusi sosial.
Hanya saja, kondisi sosial masyarakat dunia merupakan subyek yang sulit diukur termasuk pula dalam mengidentifikasi parameter di dalamnya. Maka dari itu perlu dibuatkan model   yang   akan mewakili subyek sosial masyarakat dunia yang juga mampu yang memunculkan dinamika perubahan sosial. Ruang lingkup sosial dibatasi untuk secara spesifik mengalamati gender politik. Dalam kasus ini, metode kualitatif mampu menangkap ruang lingkup kajian dan variabel perihal revolusi sosial yang terjadi. Kebenaran pemilihan variabel dalam metode ini akan diujikan terlebih dahulu sebelum membangun formasi data kubikal yang akan menampung data-data yang menjadi bukti adanya revolusi sosial dunia.
Data pergerakan revolusi sosial ini akan diprediksi menggunakan teknik data mining untuk melihat hasil akhir dalam jangka waktu tertentu   perihal kondisi yang terjadi di masyarakat. Hasil prediksi ini dapat dijadikan dasar gagasan untuk memberikan konsultasi edukatif ranah sosial perihal urgensi masyarakat terkait politik gender dan sebagai  masukkan bagi tokoh-tokoh pembuat kebijakan dalam menyikapi revolusi sosial. 
Kata kunci :
Prediksi, revolusi sosial dunia, data mining , data kubikal, metode kualitatif, aturan asosiasi
Abstract
Experts on gender politics and sociologists express the problematic with the world of social revolution that resulted in the disintegration of individual human societies, gender confusion, as a group including the family. Problems such as the war between the sexes, and social community conflict is just part of the consequences that occur because of social revolution.
However, social conditions the world is a subject that is difficult to measure including to identify the parameters in it. Therefore needs to be made the subject of a model which will represent the social world that is also capable to address the dynamics of social change. The scope is limited to specific social with the political gender studies. In this case, a qualitative method is able to capture the scope of the study and variables concerning social revolution that occurred. Truth selection of variables in this method will be tested first before building a data cubical information that will collect data that is providing clues to the social revolution the world.
Data movement is a social revolution would be predicted using data mining techniques to see the final results within a specified period, concerning conditions that occur in the community. The results of these predictions can be used as the basis of the idea to provide educational consultation concerning the social aspects of public importance related to gender politics and as the figures entered for policy makers in addressing the social revolution.

Keywords :

Predictions, world social revolutions, data mining, data cubes, qualitative methods, association rules

  • Download: Paper 3 JMII Vol 2  No 1 Tahun  2017 
  • Link detail temporer:  http://ejournal.ferisulianta.com/download/JMII%20Vol%202%20No%201%202017/Paper%203%20JMII%20VOL%202%20%20No%201%20Tahun%202017.pdf
References:


[1].   Abdul Karim . KERANGKA STUDI FEMINISME (Model Penelitian Kualitatif tentang Perempuan dalam Koridor Sosial Keagamaan) . Fikrah, Vol. 2, No. 1, Juni 2014
[2].   Agrawal, R., Srikant, R., Fast Algorithms for Mining Association Rules. IBM Almaden Research Center 650 Harry Road, San Jose, CA 95120. Proceedings of the 20th VLDB Conference Santiago, Chile. 1994.
[3].   Amir B. Qualitative Research in  Sociology. SAGE Publications Ltd. London 2004.
[4].   Blaxter, L, Hughes, C and Tight, M (1996) How to Research, Buckingham, Open University Press.
[5].   Bryman, A (1988) Quantity and Quality in Social Research, London, Routledge.
[6].   Burns, R (2000) Introduction to Research Methods, London, Sage.
[7].   Dr. Marzuki, M.Ag., KAJIAN AWAL TENTANG TEORI-TEORI GENDER. PKn dan Hukum FISE UNY)
[8].   Feri Sulianta. Awaken The Giant – bangkitnya Revolusi Sosial Dunia. Leutikaprio Publications. Desember 2016.
[9].     Gumilar Rusliwa Somantri. Memahami Metode Kualitatif. Makara, Sosial Humaniora, Vol. 9, No. 2, Desember 2005: 57-65
[10].  Han,Jiawei., Kamber, Micheline., Data Mining:Concepts and Techniques. Morgan Kaufmann Publishers 2006 
[11].  How feminism is to blame for the breakdown of the family, by Left-winger Diane Abbott. [http://www.dailymail.co.uk/news/article-2256850/How-feminism-blame-breakdown-family-Left-winger-Diane-Abbott.html].
[12].  White, Howard. Institute of Development Studies, Brighton, UKCombining Quantitative and Qualitative Approaches in Poverty Analysis. World Development. Vol. 30, No. 3, pp. 511–522, 2002. 2002 Published by Elsevier Science Ltd
[13].  Ivan Bratko and Dorian ˇSuc. Qualitative Data Mining and Its Applications. Journal of Computing and Information Technology - CIT 11, 2003, 3, 145-150
[14].  John F. Elder IV, Ph.D.. Data Mining with Qualitative and Quantitative Data. iianalytics.com. 2011.
[15].  Natasha Mack. Qualitative Research Methods: A Data Collector’s Field Guide. Family Health International. 2005
[16].  Sulianta, Feri. . Customer Profiling Pada Supermarket Menggunakan Algoritma K-Means Dalam Memilih Produk Berdasarkan Selera Konsumen Dengan Daya Beli Maksimum. Jurnal Ilmiah Teknologi Informasi Terapan, Vol 1, No 1 (2014), ISSN: 2407-3911.
[17].  Sulianta, Feri. Mining Food Industry’s Multidimensional Data to Produce Association Rules using Apriori Algorithm as a basis of Business Strategy. IEEE. Issue 28, March 2013.
[18].  Sulianta, Feri. Mining Transactional Data To Produce Extended Association Rules Using Collaborative Apriori, Fsa-Red And M5p Predictive Algorithm As A Basis Of Business Actions. Prosiding WISS. 2016.
[19].  Witten,Ian., Frank, Eibe., Data Mining – Practical Machine Learning Tool and techniques. Morgan Kaufmann Publishers 2005  page :6 ; page: 27 paragraph 1 ; page : 112-118, page 47-86.